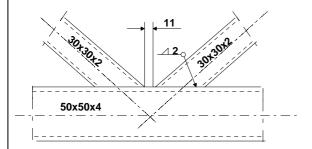
VTT TECHNICAL RESEARCH CENTRE OF FINLAND VTT BUILDING AND TRANSPORT Kemistintie 3, Espoo P.O.Box 1805, FIN-02044 VTT, Finland	Nr.	R0SU0	0658	Blatt	1	von	3	Index	В
	Titel	ECSC Stainless Steel Valorisation Project							
	Inhalt	Bemessungsbeispiel 4 – Ermüdungsfestigkeit einer geschweißten Verbindung eines Hohlprofils							
Telephone: + 358 9 4561 Fax: + 358 9 456 7003	Auftraggeber		Aufgestellt	A	AT	Datun	n	Juni 20	02
Statikpapier	ECSC		Geprüft	JE	EK	Datun	n	Juni 20	02
			Korrigiert	M	EB	Datun	n	April 20	006

BEMESSUNGSBEISPIEL 4 - ERMÜDUNGSFESTIGKEIT EINER GESCHWEIßTEN VERBINDUNG EINES HOHLPROFILS

Dieses Beispiel bewertet die Ermüdungsfestigkeit eines geschweißten Knotens aus Hohlprofilen. Ermüdung kann in Edelstahlkonstruktionen zu Problemen führen, die auf sich wiederholende Schwankungen der Spannung zurückzuführen sind. Ermüdung von geschweißten Verbindungen mit Hohlprofilen kann beispielsweise ein Problem auf Öl-Plattformen, bei Masten, Kaminen, Brücken, Kränen, und Transporteinrichtungen sein.


EN 1993-1-9:2005 ist anwendbar, um die Ermüdungsfestigkeit von Edelstahl abzuschätzen. Die in diesem Beispiel genannten Abschnitte und Empfehlungen beziehen sich auf EN 1993-1-9:2005.

Abschnitt 8

Dieses Beispiel zeigt die folgenden Bemessungsschritte für eine Ermüdungsuntersuchung:

- Bestimmung der Ermüdungsfestigkeitskurve
- Bestimmung der sekundären Anschlussmomente
- Bestimmung des Teilsicherheitsbeiwertes für Ermüdungsfestigkeit
- Ermüdungsuntersuchung für unterschiedliche Amplituden Belastung.

Der Knoten der Verbindung ist ausgeführt aus RHS 50x50x4 und Streben RHS 30x30x2. Es handelt sich um die Edelstahlsorte 1.4301 mit einer 0,2% Streckgrenze von 220 N/mm².

Einwirkungen

Die ermittelte Beanspruchung des Knotens durch Schwingung während der geforderten Lebensdauer ist:

Nennspannungs- Anzahl der Lastwechsel schwingbreite

 $\Delta \sigma_1 = 100 \text{ N/mm}^2$ $n_1 = 10 \times 10^3$ $\Delta \sigma_2 = 70 \text{ N/mm}^2$ $n_2 = 100 \times 10^3$ $\Delta \sigma_3 = 40 \text{ N/mm}^2$ $n_3 = 1000 \times 10^3$

			00658	Blatt	2	von 3	Index B
VTT TECHNICAL RESEARCH	Titel	ECSC	Stainless S	Steel '	Valorisati	on Projec	t
CENTRE OF FINLAND VTT BUILDING AND TRANSPORT Kemistintie 3, Espoo	Inhalt		sungsbeis _l eißten Ve				gkeit einer fils
P.O.Box 1805, FIN-02044 VTT, Finland Telephone: + 358 9 4561 Fax: + 358 9 456 7003	Auftraggeber		Aufgestellt		AAT	Datum	Juni 2002
Statikpapier	ECSC		Geprüft		JEK	Datum	Juni 2002
			Korrigiert		MEB	Datum	April 2006
Berechnung Der Kerbfall der Verbindung hängt ab. In diesem Beispiel sind $b_0 = 50$							Die unten genannten Referenzen beziehen sic auf EN 1993 1-9:2005
Da $t_0 / t_i = 2$ handelt es sich um Ko	erbfall 71.						Tabelle 8.7
Da $0.5(b_0 - b_i) = 10 \text{ mm}$, $g = 11 \text{ mm}$ Verbindung auch den Bedingungen						t die	Tabelle 8.7
Einfluss aus sekundären Ansch Der Einfluss aus sekundären Ansch Schwingbreite, die aufgrund von ax $k_{1,0} = 1,5$ berücksichtigt	lussmomente	en wird d		•		t	Satz 4 (2), Tabelle 4.1
Teilsicherheitsbeiwert Wenn der Struktur Robustheit unter der Sicherheitsfaktor für Ermüdung Teilsicherheitsfaktor für Lasteinwir	sfestigkeit γ	$\gamma_{\rm Mf} = 1.0$	•	Versa	gens kleir	n ist, ist	Satz 3 (7), Tabelle 3.1
Wenn der Struktur Robustheit unter	sfestigkeit γ	$\gamma_{\rm Mf} = 1.0$	•	Versa	gens kleir	ı ist, ist	1
Wenn der Struktur Robustheit unter der Sicherheitsfaktor für Ermüdung Teilsicherheitsfaktor für Lasteinwir Ermüdungsuntersuchung Bezugsspannungsschwingbreite ent ist:	sfestigkeit γ kung ist $\gamma_{ m Ff}$	$Y_{\rm Mf} = 1.0$.					
Wenn der Struktur Robustheit unter der Sicherheitsfaktor für Ermüdung Teilsicherheitsfaktor für Lasteinwir Ermüdungsuntersuchung Bezugsspannungsschwingbreite ent	sfestigkeit γ kung ist $\gamma_{\rm Ff}$ sprechend 2 Fachwerkträtsprechend d	$t_{\rm Mf} = 1.0$. = 1.0. \times 10 ⁶ Sp	annungsw ine konsta	echse	els für Ker teigung <i>n</i>	bfall 71	

	Nr.	R0SU0	0658	Blatt	3	von 3	Index B		
TT TECHNICAL RESEARCH	Titel	ECSC	Stainless	Steel V	Valorisati	on Projec	ct		
ENTRE OF FINLAND TT BUILDING AND TRANSPORT emistintie 3, Espoo	Inhalt	Inhalt Bemessungsbeispiel 4 – Ermüdungsfestigke geschweißten Verbindung eines Hohlprofil							
.O.Box 1805, FİN-02044 VTT, Finland elephone: + 358 9 4561 ax: + 358 9 456 7003	Auftraggeber	Auftraggeber ECSC		Aufgestellt AAT		Datum	Juni 2002		
Statikpapier	ECSC				JEK	Datum	Juni 2002		
			Korrigiert		MEB	Datum	April 2006		
Schadensakkumulation nach	Palmgren-l	Miner	1	•		•			
Feilversagen aufgrund von n_i Wed	•		ite $\Delta\sigma_i$ is	t					
$D_{\mathrm{d},i} = n_{\mathrm{Ei}}/N_{\mathrm{Ei}}$. Hierfür gilt für							A.5 (1)		
$\Delta \sigma_1 = 100 \mathrm{N/mm}^2 \qquad \qquad D_{\mathrm{d},1}$	= 0,21								
$\Delta \sigma_2 = 70 \mathrm{N/mm}^2$ $D_{\mathrm{d,2}}$	= 0,35								
$\Delta \sigma_3 = 40 \text{ N/mm}^2 \qquad D_{d,3}$									
	,								
Dia Cahadanaakkumulati aa21	ad dan I al-a	ndonar D	$-\sum_{n=1}^{\infty} n^{n}$	\imath_{Ei}	\sum_{D}	_ 0.70	A.5 (1)		
Die Schadensakkumulation währer	ia der Lebens	suauer $D_{ m d}$	$-\sum_{i}\frac{1}{N}$	$\overline{V}_{Ri} =$	$\mathcal{L}^{D_{\mathrm{d,i}}}$	- 0,/8			
Da die Schadensakkumulation klei des Knotens größer als die erforder			echnete l	Bemes	sungsleb	ensdauer	Satz 8(4)		
Die oben beschriebene Vorgehensv	weise ist eben	ıso für die	e Strebe d	lurchz	ıführen.				