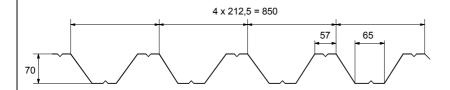
# VTT TECHNICAL RESEARCH CENTRE OF FINLAND VTT BUILDING AND TRANSPORT Kemistintie 3 Espage

VTT BUILDING AND TRANSPORT Kemistintie 3, Espoo P.O.Box 1805, FIN–02044 VTT, Finland Telephone: + 358 9 4561


Telephone: + 358 9 4561 Fax: + 358 9 456 7003

**FOGLIO DI CALCOLO** 

| Commessa N.     | ROS | SU00658                                                                                   | Foglio               | 1        | di     | 7         | Rev        | В    |  |  |  |
|-----------------|-----|-------------------------------------------------------------------------------------------|----------------------|----------|--------|-----------|------------|------|--|--|--|
| Titolo commessa | RFC | FCS Stainless Steel Valorisation Project                                                  |                      |          |        |           |            |      |  |  |  |
| Argomento       |     | Ssempio di progetto 3 – Dimensionamento della amiera grecata per una copertura a due luci |                      |          |        |           |            |      |  |  |  |
| Cliente         |     | Redatto da                                                                                | A                    | AAT Data |        | (         | Giugno 200 |      |  |  |  |
| RFCS            |     | Verificato o                                                                              | cato da JEK Data Giu |          | Giugno | 2002      |            |      |  |  |  |
|                 |     | Revisionate                                                                               | o da JB              | L/MEB    | Data   | ta Aprile |            | 2006 |  |  |  |

### ESEMPIO DI PROGETTO 3 – DIMENSIONAMENTO DELLA LAMIERA GRECATA PER UNA COPERTURA A DUE LUCI

Il tipo di acciaio inossidabile è 1.4401 e lo spessore della lamiera è 0,6 mm. La sezione trasversale è quotata nella seguente figura:



Il presente esempio coinvolge I seguenti aspetti progettuali:

- determinazione delle proprietà della sezione efficace e allo Stato Limite Ultimo
- determinazione della resistenza a flessione delle sezioni
- determinazione della resistenza alla reazione dell'appoggio intermedio
- determinazione della deformazione allo Stato Limite di Servizio.

L

In questo esempio si fanno richiami alla norma EN 1993-1-3:2005 e si adottano i simboli e la terminologia in essa definiti. Per comprendere a pieno il presente esempio è necessario fare riferimento a detta norma.

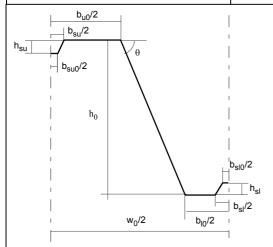
 $= 2900 \, \text{mm}$ 

#### Dati di progetto

Luci

Larghezza degli appoggi  $= 100 \, \text{mm}$  $= 1.4 \text{ kN/m}^2$ Q Carichi di progetto Spessore nominali  $= 0.6 \, \text{mm}$  $= 240 \text{ N/mm}^2$ Resistenza caratteristica allo  $f_{yb}$ Tabella 3.1 snervamento  $= 200\ 000\ \text{N/mm}^2$ Par. 3.2.4 Modulo di elasticità Coeff. parziale di sicurezza Tabella 2.1  $\gamma_{M0} = 1.1$ Tabella 2.1 Coeff. parziale di sicurezza  $\gamma_{\rm M1} = 1.1$ 

I simboli ed I dettagli dimensionali usati nei calculi sono rappresentati nella seguente figura.


| VTT TECHNICAL RESEARC | Н |
|-----------------------|---|
| CENTRE OF FINLAND     |   |
|                       | - |

VTT BUILDING AND TRANSPORT Kemistintie 3, Espoo P.O.Box 1805, FIN-02044 VTT, Finland Telephone: + 358 9 4561

Fax: + 358 9 456 7003

| <b>FOGL</b> | 10   |      | $\sim$ A I | $\sim$ | $\sim$ |
|-------------|------|------|------------|--------|--------|
| F()(41      | 1( ) | 1 )1 | ( : A I    | ( :( ) | ( )    |
|             |      |      |            |        |        |

|  | Commessa N.     | ROS                                                                                        | U00658                                   | Foglio  | 2          | di   | 7 | Rev         | В    |  |  |
|--|-----------------|--------------------------------------------------------------------------------------------|------------------------------------------|---------|------------|------|---|-------------|------|--|--|
|  | Titolo commessa | RFC                                                                                        | FCS Stainless Steel Valorisation Project |         |            |      |   |             |      |  |  |
|  | Argomento       | Esempio di progetto 3 – Dimensionamento della lamiera grecata per una copertura a due luci |                                          |         |            |      |   |             |      |  |  |
|  | Cliente         |                                                                                            | Redatto da                               | A       | <b>A</b> T | Data | ( | Giugno      | 2002 |  |  |
|  | RFCS            |                                                                                            | Verificato o                             | la JE   | JEK        |      | ( | Giugno 2002 |      |  |  |
|  |                 |                                                                                            | Revisionate                              | o da JB | L/MEB      | Data |   | Aprile 2006 |      |  |  |
|  |                 |                                                                                            |                                          |         |            |      |   |             |      |  |  |



Dimensioni

Raggio di piega

interno

 $h_0 = 70 \, \text{mm}$ 

 $w_0 = 212,5 \,\mathrm{mm}$ 

 $b_{u0} = 65 \text{ mm}$ 

 $b_{10} = 57 \text{ mm}$ 

 $b_{\rm su} = 20 \, \rm mm$ 

 $b_{\rm su0} = 8 \, \rm mm$ 

 $h_{\rm su} = 6 \, \rm mm$ 

 $b_{\rm s}l = 20 \, \rm mm$ 

 $b_{s10} = 8 \text{ mm}$ 

 $h_{\rm s,l} = 6 \, \rm mm$ 

r = 3 mm

Inclinazione dell'anima:

$$\theta = \operatorname{atan} \left| \frac{h_0}{0.5(w_0 - b_{u0} - b_{l0})} \right| = 57.1 \text{ deg}$$

#### PROPRIETÀ DELLA SEZIONE EFFICACE ALLO STATO LIMITE ULTIMO (SLU)

Verifica del rispetto dei limiti massimi per le dimensioni della sezione:

 $h_0 / t = 117$  è meno di  $400 \sin \theta = 336$  e

 $b_{l0} / t = 95$  è meno di 400.

Tabella 4.1

Par. 4.4.1

Tabella 4.1

Par. 4.4

Posizione del baricentro quando l'anima è completamente efficace

Larghezza efficace della flangia compressa:

$$b_{\rm p} = \frac{b_{\rm u0} - b_{\rm su}}{2} = 22.5 \,\mathrm{mm}$$

$$b_{\rm p} = \frac{b_{\rm u0} - b_{\rm su}}{2} = 22,5 \,\text{mm}$$
  $\varepsilon = \left[ \frac{235}{f_{\rm y}} \frac{E}{210\,000} \right]^{0.5} = 0,966$ 

$$\overline{\lambda}_{\rm p} = \frac{b_{\rm p}/t}{28.4\varepsilon\sqrt{k_{\rm o}}} = 0.684$$

$$\rho = \frac{0.772}{\overline{\lambda}_{\rm p}} - \frac{0.125}{\overline{\lambda}_{\rm p}^2} = 0.862$$
 poichè  $\rho < 1$ ,  $b_{\rm eff,u} = \rho b_{\rm p} = 19.4$  mm

poichè 
$$\rho < 1$$

$$b_{\text{off}} = \rho b_{\text{n}} = 19.4 \text{ mm}$$

Lo spessore ridotto dell'irrigidimento della flangia è:

Par. 4.5.3

|                                                                                                                                                                     | Commessa N.                                         | R0SU00658                              | Foglio                       | 3                                   | di 7                  | Rev B              |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|----------------------------------------|------------------------------|-------------------------------------|-----------------------|--------------------|--|--|
| TT TECHNICAL RESEARCH                                                                                                                                               | Titolo commessa                                     | RFCS Stainle                           | ess Stee                     | l Valori                            | sation Pi             | roject             |  |  |
| CENTRE OF FINLAND  (TT BUILDING AND TRANSPORT  (Cemistintie 3, Espoo                                                                                                | Argomento                                           | Esempio di pi<br>lamiera greca         | _                            |                                     |                       |                    |  |  |
| P.O.Box 1805, FIN-02044 VTT, Finland<br>Felephone: + 358 9 4561<br>Fax: + 358 9 456 7003                                                                            | Cliente                                             | Redatto da                             | n /                          | AAT                                 | Data                  | Giugno 200         |  |  |
| FOGLIO DI CALCOLO                                                                                                                                                   | RFCS                                                | Verificato o                           | da J                         | EK                                  | Data                  | Giugno 2002        |  |  |
|                                                                                                                                                                     |                                                     | Revisionat                             | o da _ j                     | BL/MEB                              | Data                  | Aprile 2006        |  |  |
| $t_{su} = \frac{\sqrt{h_{su}^{2} + \left(\frac{b_{su} - b_{su0}}{2}\right)^{2}}}{h_{su}}t$ $A_{s} = (b_{eff,u} + b_{su0})t + 2h_{su}t_{su}$                         |                                                     |                                        |                              |                                     |                       | Fig. 4.3           |  |  |
| $e_{\rm s} = \frac{b_{\rm su0}h_{\rm su}t + 2h_{\rm su}\frac{h_{\rm su}}{2}t_{\rm su}}{A_{\rm s}}$                                                                  | = 2,23 mm                                           | 22 (4)                                 |                              |                                     | 3                     | Fig. 4.3           |  |  |
| $I_{s} = 2(15t^{2}e_{s}^{2}) + b_{su0}t(h_{su} - e_{s})^{2}$ $= 159,53 \text{mm}^{4}$                                                                               | <b>\</b>                                            | , ( )                                  | $+\frac{b_{\rm su0}t^3}{12}$ | $-+2\frac{t_{\rm su}h_{\rm s}}{12}$ | <u>su</u><br><u>)</u> | 11g. 4.5           |  |  |
| $b_{\rm s} = 2\sqrt{h_{\rm su}^2 + \left(\frac{b_{\rm su} - b_{\rm su0}}{2}\right)^2 + \left(\frac{2b_{\rm su} + 3b_{\rm su}}{2}\right)^{1/4}}$                     |                                                     | m                                      |                              |                                     |                       |                    |  |  |
| $I_{b} = 3.07 \left( I_{s} b_{p}^{2} \frac{2b_{p} + 3b_{s}}{t^{3}} \right)^{1/4}$ $s_{w} = \sqrt{\left( \frac{w_{0} - b_{u0} - b_{l0}}{2} \right)^{2} + h_{0}^{2}}$ | _                                                   |                                        |                              |                                     |                       | Eq. 4.9            |  |  |
| $b_{\rm d} = 2b_{\rm p} + b_{\rm s}$                                                                                                                                | $k_{\rm w0} = \sqrt{\frac{s_{\rm w}}{s_{\rm w}}} +$ | , u                                    |                              |                                     |                       | Eq. 4.10 e<br>4.11 |  |  |
| $l_{\rm b}/s_{\rm w} = 3.01$ $\sigma_{\rm cr,s} = \frac{4.2k_{\rm w}E}{A_{\rm s}} \sqrt{\frac{I_{\rm s}t^3}{4b_{\rm p}^2(2b_{\rm p} + 3b_{\rm s})}}$                | Poichè $l_b/s$ $= 515 \text{ N/mm}$                 |                                        | $_{w0} = 1,3$                | 7                                   |                       | Eq. 4.3            |  |  |
| $\overline{\lambda}_{\rm d} = \sqrt{\frac{f_{\rm yb}}{\sigma_{\rm cr,s}}} = 0.683$                                                                                  |                                                     |                                        |                              |                                     |                       |                    |  |  |
| Poichè $0.65 < \overline{\lambda}_d < 1.38$ ,<br>$t_{\text{red,u}} = \chi t = 0.588 \text{mm}$                                                                      | $\chi = 1,47 - 0,7$                                 | $723\overline{\lambda}_{\rm d} = 0.98$ |                              |                                     |                       | Eq. 4.15           |  |  |
| La distanza dell'asse neutro dalla f                                                                                                                                | langia compressa                                    | è:                                     |                              |                                     |                       |                    |  |  |

## **CENTRE OF FINLAND**

VTT BUILDING AND TRANSPORT Kemistintie 3, Espoo P.O.Box 1805, FIN-02044 VTT, Finland Telephone: + 358 9 4561 Fax: + 358 9 456 7003

| FOGL | IO | DI | CA | I C | :OI | $\mathbf{c}$ |
|------|----|----|----|-----|-----|--------------|

|  | Commessa N.     | ROS                                                                                        | U00658        | Foglio   | 4          | di     | 7       | Rev         | В |  |
|--|-----------------|--------------------------------------------------------------------------------------------|---------------|----------|------------|--------|---------|-------------|---|--|
|  | Titolo commessa | RFC                                                                                        | CS Stainle    | ss Steel | Valori     | satio  | n Proje | ect         |   |  |
|  | Argomento       | Esempio di progetto 3 – Dimensionamento della lamiera grecata per una copertura a due luci |               |          |            |        |         |             |   |  |
|  | Cliente<br>RFCS |                                                                                            | Redatto da    | A        | <b>A</b> T | Data   | (       | Giugno 2    |   |  |
|  |                 |                                                                                            | Verificato da |          | K          | Data ( |         | Giugno 2002 |   |  |
|  |                 |                                                                                            | Revisionat    | o da JB  | L/MEB      | Data   | 1       | Aprile 20   |   |  |

| $t_{\rm w} = t/\sin\theta = 0.714$ | mm                                     |                                                                       |
|------------------------------------|----------------------------------------|-----------------------------------------------------------------------|
| $e_i =$                            | $A_i =$                                |                                                                       |
| 0                                  | $0.5b_{ m eff,u}t$                     | <b>~</b>                                                              |
| 0                                  | $0.5b_{ m eff,u}\chi t$                | $A_{\text{tot}} = \sum A_i = 87,5 \text{mm}^2$                        |
| $0.5h_{\mathrm{su}}$               | $h_{\mathrm{su}} \chi t_{\mathrm{su}}$ |                                                                       |
| $h_{\mathrm{su}}$                  | $0.5b_{\mathrm{su}0}\chi t$            | $\sum_i A_i e_i$                                                      |
| $0.5h_0$                           | $h_0 t_{ m w}$                         | $e_{\rm c} = \frac{\sum_{i} A_i e_i}{A_{\rm tot}} = 34.9 \mathrm{mm}$ |
| $h_0$                              | $0.5(b_{l0}-b_{sl})t$                  |                                                                       |
| $h_0 - 0.5 h_{sl}$                 | $h_{\mathrm sl}t_{\mathrm sl}$         |                                                                       |
| $h_0 - 0.5h_{sl}$ $h_0 - h_{sl}$   | $0.5b_{\mathrm sl0}t$                  |                                                                       |

#### Sezione efficace della parte compressa dell'anima

$$\psi = -\frac{h_0 - e_{\rm c}}{e_{\rm c}} = -1,006$$

$$k_{\rm \sigma} = 5.98(1-\psi)^2 = 24.1$$

Par. 4.4.1

$$b_{\rm p} = h_0 / \sin \theta = 83.4 \,\mathrm{mm}$$

$$b_{\rm p} = h_0 / \sin \theta = 83.4 \,\mathrm{mm}$$
  $\overline{\lambda}_{\rm p} = \frac{b_{\rm p} / t}{28.4 \varepsilon \sqrt{k_{\sigma}}} = 1,032$ 

$$\rho = \frac{0,772}{\overline{\lambda}_{p}} - \frac{0,125}{\overline{\lambda}_{p}^{2}} = 0,630$$

$$\rho = \frac{0,772}{\overline{\lambda}_{\rm p}} - \frac{0,125}{\overline{\lambda}_{\rm p}^2} = 0,630$$
 Poichè  $\rho < 1, b_{\rm eff} = \rho \frac{b_{\rm p}}{1-\psi} = 26,2 \, {\rm mm}$ 

$$s_{\text{eff,1}} = 0.4b_{\text{eff}} = 10.5 \text{ mm}$$
  $s_{\text{eff,n}} = 0.6b_{\text{eff}} = 15.7 \text{ mm}$ 

$$s_{\rm eff,n} = 0.6b_{\rm eff} = 15.7 \, \rm mm$$

#### Tabella 4.3

#### Sezione efficace di metà greca

$$h_{\text{eff},1} = s_{\text{eff},1} \sin \theta$$

$$h_{\text{eff},n} = s_{\text{eff},n} \sin \theta$$

| Λ.                                                                                                                         | Commessa N.                                          | ROS                | U00658                               | Foglio                                  | 5                                          | di            | 7 | Rev                       | В    |  |  |
|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--------------------|--------------------------------------|-----------------------------------------|--------------------------------------------|---------------|---|---------------------------|------|--|--|
| VII                                                                                                                        | Titolo commessa                                      |                    | CS Stainle                           | es Ste                                  |                                            |               |   | iect                      |      |  |  |
| VTT TECHNICAL RESEARCH CENTRE OF FINLAND                                                                                   | Argomento                                            |                    |                                      |                                         |                                            |               |   |                           | 110  |  |  |
| VTT BUILDING AND TRANSPORT<br>Kemistintie 3, Espoo                                                                         | rugomento                                            |                    | mpio di pi<br>iera greca             | _                                       |                                            |               |   |                           | па   |  |  |
| P.O.Box 1805, FIN–02044 VTT, Finland<br>Telephone: + 358 9 4561<br>Fax: + 358 9 456 7003                                   | Cliente                                              |                    | Redatto da                           | l                                       | AAT                                        | Data          |   | Giugno 2002               |      |  |  |
| FOGLIO DI CALCOLO                                                                                                          | RFCS                                                 |                    | Verificato o                         | la                                      | JEK                                        | Data          |   | Giugno 2002               |      |  |  |
|                                                                                                                            |                                                      |                    | Revisionate                          | o da                                    | JBL/MEB                                    | Data          |   | Aprile                    | 2006 |  |  |
| $h_0$                                                                                                                      | $0.5(b_{l0}-b_{sl})t$                                |                    |                                      | 0                                       |                                            |               |   |                           |      |  |  |
| $h_0 - 0.5h_{\rm sl}$                                                                                                      | $h_{ m sl}t_{ m sl}$                                 |                    | t                                    | $h_{\rm sl}h_{\rm sl}^3$                | 12                                         |               |   |                           |      |  |  |
| $h_0 - h_{\rm sl}$                                                                                                         | $0.5b_{\rm sl0}t$                                    |                    |                                      | 0                                       |                                            |               |   |                           |      |  |  |
| $A_{\rm tot} = \sum A_{\rm eff,i} = 78.2  \mathrm{mm}^2$                                                                   | $e_{\rm c} = \frac{\sum A_{\rm eff,i}}{A_{\rm tot}}$ | e <sub>eff,i</sub> | = 37,20                              | ) mm                                    |                                            |               |   |                           |      |  |  |
| $I_{\text{tot}} = \sum I_{\text{eff,i}} + \sum A_{\text{eff,i}} (e_{\text{c}} - e_{\text{eff,i}})^2$                       | $= 58400 \mathrm{mr}$                                | $n^2$              |                                      |                                         |                                            |               |   |                           |      |  |  |
| Se necessario è possibile reiterare il posizione effettiva dell'asse neutro.                                               |                                                      | zione              | efficace s                           | sulla ł                                 | oase della                                 | a             |   | EN 19 par. 5.             |      |  |  |
| Resistenza a flessione per lar                                                                                             | ghezza unitari                                       | a del              | la greca                             | (1 m                                    | )                                          |               |   | Par. 4.                   | 7 4  |  |  |
| $I = \frac{1000 \mathrm{mm}}{0.5 \mathrm{w}_0} I_{\text{tot}} = 549000$                                                    |                                                      | <b>.</b>           | g                                    | (                                       | ,                                          |               |   | - W                       |      |  |  |
| $W_{\rm u} = \frac{I}{e_{\rm c}} = 14800{\rm mm}^3$                                                                        | $W_1 =$                                              | $\frac{I}{h_0}$    | $\frac{1}{e_{\rm c}} = 168$          | 800 m                                   | m <sup>3</sup>                             |               |   |                           |      |  |  |
| Poichè $W_{\rm u} < W_{\rm l}$ ,                                                                                           | $W_{ m eff,m}$                                       | <sub>nin</sub> =   | $W_{\rm u} = 14$                     | 800 r                                   | nm <sup>3</sup>                            |               |   |                           |      |  |  |
| $M_{\rm c,Rd} = W_{\rm eff,min} f_{\rm y} / \gamma_{\rm M0} = 3,22  \mathrm{k}$                                            | xNm                                                  |                    |                                      |                                         |                                            |               |   | Eq. 4.2                   | 29   |  |  |
| DETERMINATION OF THE RESISTAN                                                                                              | NCE AT THE INTE                                      | RME                | DIATE SUI                            | PPOR <sup>®</sup>                       | Г                                          |               |   |                           |      |  |  |
| Resistenza dell'anima                                                                                                      |                                                      |                    |                                      |                                         |                                            |               |   | Par. 5.                   | 4.4  |  |  |
| In questo caso $\varphi = \theta$                                                                                          |                                                      |                    |                                      |                                         |                                            |               |   |                           |      |  |  |
| $l_{\rm a} = s_{\rm s}$ e $\alpha = 0.15$                                                                                  |                                                      |                    |                                      |                                         |                                            |               |   | EN 19<br>eq. 6.1<br>6.20c |      |  |  |
| $R_{\text{w,Rd}} = \alpha t^2 \sqrt{f_{\text{yb}} E} \left( 1 - 0.1 \sqrt{\frac{r}{t}} \right) \left( \frac{r}{t} \right)$ | $0.5 + \sqrt{0.02 \frac{l_a}{t}} $                   | 2,4+               | $\left(\frac{\phi}{90\deg}\right)^2$ | $\left[\frac{1}{\gamma_{\rm M}}\right]$ | $\frac{1000 \mathrm{m}}{0.5 \mathrm{w}_0}$ | <u>m</u><br>) |   | EN 19<br>eq. 6.1          |      |  |  |
| $= 16.2 \mathrm{kN}$                                                                                                       |                                                      |                    |                                      |                                         |                                            |               |   |                           |      |  |  |
| Combinazione di momento fle                                                                                                | ttente e reazio                                      | ne d               | li appog                             | gio                                     |                                            |               |   |                           |      |  |  |
| Forze agenti per unità di larghezza                                                                                        | ` ′                                                  |                    |                                      |                                         |                                            |               |   | _                         |      |  |  |
| $\gamma_{\rm G}$ = 1,35 $\gamma_{\rm Q}$ = 1,5                                                                             | Peso proprio:                                        | G =                | = 70 N/m <sup>2</sup>                | 2                                       |                                            |               |   | Par. 2.                   | 3.2  |  |  |
| $q = (\gamma_G G + \gamma_Q Q) = 2,20 \text{ kN/m}$                                                                        |                                                      |                    |                                      |                                         |                                            |               |   | Eq. 2                     | 3    |  |  |
|                                                                                                                            |                                                      |                    |                                      |                                         |                                            |               |   |                           |      |  |  |

| <b>1</b>                                                                                             | Commessa N.                 | ROS             | U00658                        | Foglio                       | 6                                     | d      | i               | 7    | Rev          | E     | 3   |
|------------------------------------------------------------------------------------------------------|-----------------------------|-----------------|-------------------------------|------------------------------|---------------------------------------|--------|-----------------|------|--------------|-------|-----|
| VTT TECHNICAL RESEARCH                                                                               | Titolo commessa             | RFC             | S Stainle                     | ss Ste                       | eel Val                               | orisat | ion             | Proj | ject         |       |     |
| CENTRE OF FINLAND VTT BUILDING AND TRANSPORT Kemistintie 3, Espoo                                    | Argomento                   |                 | npio di pi<br>era greca       |                              |                                       |        |                 |      |              | ella  |     |
| P.O.Box 1805, FIN-02044 VTT, Finland<br>Telephone: + 358 9 4561<br>Fax: + 358 9 456 7003             | Cliente                     |                 | Redatto da AAT                |                              | AAT                                   | Da     | ata             |      | Giugno 2002  |       | 02  |
| FOGLIO DI CALCOLO                                                                                    | RFCS                        |                 | Verificato d                  | la                           | JEK                                   | Da     | ata             |      | Giugn        | ю 20  | 002 |
|                                                                                                      | Revisionato da JBL/MEB Data |                 |                               |                              |                                       | Aprile | 200             | 16   |              |       |     |
| $M_{\rm Ed} = \frac{qL^2}{8} = 2.31 \mathrm{kNm}$                                                    | $F_{ m Ed}$ :               | $=\frac{5}{4}q$ | L = 7,96                      | kN                           |                                       |        |                 |      |              |       |     |
| $\frac{M_{\rm Ed}}{M_{\rm c,Rd}} = 0,716 \qquad \frac{F_{\rm Ed}}{R_{\rm w,Rd}}$                     | - = 0,491                   |                 | $rac{M_{ m Eo}}{M_{ m c,F}}$ | $\frac{d}{Rd} + \frac{1}{R}$ | $\frac{F_{\rm Ed}}{R_{\rm w,Rd}} =$   | = 1,21 | -               |      |              |       |     |
| La combinazione di momento fletter                                                                   | nte e reazione di           | appo            | ggio sodo                     | disfa l                      | le cond                               | izion  | i:              |      |              |       |     |
| $\frac{M_{\rm Ed}}{M_{\rm c,Rd}} \le 1 \qquad \frac{F_{\rm ed}}{R_{\rm w,Rd}}$                       |                             |                 | $rac{M_{ m Eo}}{M_{ m c,F}}$ | $\frac{d}{Rd} + -$           | $\frac{F_{\rm Ed}}{R_{\rm w,Rd}} \le$ | 1,25   |                 |      | EN 15 eq. 6. |       | ,   |
| DETERMINAZIONE DELLE DEFORMA Proprietà della sezione efficace Per le verifiche di servizio la larghe | e                           |                 |                               |                              | ·                                     | •      |                 |      | EN 1         | 002   | 12  |
| calcolata sulla base della tensione ge servizio.                                                     |                             |                 |                               | •                            |                                       |        |                 | di   | par. 5       |       |     |
| La massima tensione di compression<br>con approssimazione in favore di sid                           | curezza, sulla ba           |                 |                               | _                            |                                       |        | cola            | ıta, |              |       |     |
| determinato per le verifiche allo SLU $M_{y,\text{Ed,ser}} = \frac{(G+Q)L^2}{8} = 1,55 \text{ kNm}$  |                             |                 |                               |                              |                                       |        |                 |      | Par. 2       | 2.3.4 |     |
| $\sigma_{\text{com,Ed,ser}} = \frac{M_{\text{y,Ed,ser}}}{W_u} = 105 \text{ N/mm}$                    | 12                          |                 |                               |                              |                                       |        |                 |      |              |       |     |
| Allora le proprietà della sezione effi $f_{ m yb}$ con $\sigma_{ m com, Ed, ser}$ e senza adottare   |                             |                 |                               |                              |                                       |        |                 |      |              |       |     |
| I risultati dei calcoli sono:                                                                        |                             |                 |                               |                              |                                       |        |                 |      |              |       |     |
| Larghezza efficace della flangia con<br>Posizione dell'asse baricentrico qua<br>efficace             | _                           | enam            |                               | Piena<br><sup>2</sup> c      | mente 6<br>= 34,                      |        |                 |      |              |       |     |
| Sezione efficace della parte compres                                                                 | ssa dell'anima              |                 | I                             | Piena                        | mente e                               | effica | ce              |      |              |       |     |
| Parte efficace dell'anima                                                                            |                             |                 |                               | $\rho = 0.88$                |                                       |        |                 |      |              |       |     |
| Proprietà della sezione efficace di m                                                                | età greca                   |                 | $\epsilon$                    | P <sub>c</sub>               | = 86,<br>= 34,<br>= 63                | 8 mm   | 1               | ļ    |              |       |     |
| Proprietà della sezione efficace per                                                                 | unità di larghezz           | za (1 1         | ,                             | $W_{\mathrm{u}}$             | = 600<br>= 17<br>= 17                 | 300 n  | nm <sup>4</sup> | 1    |              |       |     |

| VTT TECHNICAL RESEARCH |
|------------------------|
| CENTRE OF FINLAND      |
|                        |

VTT BUILDING AND TRANSPORT Kemistintie 3, Espoo P.O.Box 1805, FIN-02044 VTT, Finland Telephone: + 358 9 4561 Fax: + 358 9 456 7003

#### **FOGLIO DI CALCOLO**

|  | Commessa N.     | ROS                                                                                        | U00658         | Foglio   | 7          | di    | 7       | Rev         | В           |  |  |
|--|-----------------|--------------------------------------------------------------------------------------------|----------------|----------|------------|-------|---------|-------------|-------------|--|--|
|  | Titolo commessa | RFC                                                                                        | CS Stainle     | ss Steel | Valori     | satio | n Proje | ect         |             |  |  |
|  | Argomento       | Esempio di progetto 3 – Dimensionamento della lamiera grecata per una copertura a due luci |                |          |            |       |         |             |             |  |  |
|  | Cliente         |                                                                                            | Redatto da     | A        | <b>Α</b> Τ | Data  | (       | Giugno      |             |  |  |
|  | RFCS            |                                                                                            | Verificato da  |          | JEK        |       | (       | Giugno 2002 |             |  |  |
|  |                 |                                                                                            | Revisionato da |          | JBL/MEB    |       | Data A  |             | Aprile 2006 |  |  |

#### Determinazione della deformazione

Il modulo di elasticità secante corrispondente al Massimo valore del momento flettente è:

$$\sigma_{1,\text{Ed,ser}} = \frac{M_{y,\text{Ed,ser}}}{W_{\text{u}}} = 89.5 \text{ N/mm}^2$$

$$\sigma_{2,\text{Ed,ser}} = \frac{M_{y,\text{Ed,ser}}}{W_l} = 90.8 \text{ N/mm}^2$$

$$E_{s,1} = \frac{E}{1 + 0.002 \frac{E}{\sigma_{1,Ed,ser}} \left(\frac{\sigma_{1,Ed,ser}}{f_{yb}}\right)^n} = 199 \text{ kN/mm}^2 \qquad n = 7,0$$

$$E_{s,2} = \frac{E}{1 + 0,002 \frac{E}{\sigma_{1,Ed,ser}} \left(\frac{\sigma_{2,Ed,ser}}{f_{yb}}\right)^n} = 199 \text{ N/mm}^2$$

$$E_{\rm s,ser} = \frac{E_{\rm s,1} + E_{\rm s,2}}{2} = 199 \text{ N/mm}^2$$

Appendice C

Appendice C Tabella C.1

Appendice C

Verifica delle deformazioni:

La variazione di  $E_{\rm s.ser}$  lungo l'asse longitudinale viene trascurata, questa semplificazione è in favore di sicurezza:

$$x = \frac{1+\sqrt{33}}{16}L = 1,22 \,\text{m}$$
 (posizione della massima deformazione lungo l'asse long.)

$$\delta = \frac{(G+Q)L^4}{48E_{\text{s.ser}}I} \left( \frac{x}{L} - 3\frac{x^3}{L^3} + 2\frac{x^4}{L^4} \right) = 4.7 \text{ mm}$$

La deformazione ammissibile è  $L/200 = 14,5 \, \mathrm{mm}$  , dunque la deformazione di progetto è accettabile.