
\\	Nr.	R0SU00	0658	Blatt	1	von	7	Index	В
VTT TECHNICAL RESEARCH	Titel	ECSC S	Stainless S	Steel Va	lorisati	on Pro	ject		
CENTRE OF FINLAND VTT BUILDING AND TRANSPORT Kemistintie 3, Espoo P.O.Box 1805, FIN-02044 VTT, Finland	Inhalt		ungsbeisp pezprofils					nittklass	e 4
Telephone: + 358 9 4561 Fax: + 358 9 456 7003	Auftraggeber		Aufgestellt	A	AΤ	Datum	ı J	Juni 200)2
Statikpapier	ECSC		Geprüft	JE	K	Datum	ı J	Juni 200)2
			Korrigiert	JB	L/MEB	Datum		April 20	006

BEMESSUNGSBEISPIEL 3 – BEMESSUNG EINES STAHLTRAPEZPROFILS FÜR DÄCHER DER QUERSCHNITTSKLASSE 4, BIEGEBEANSPRUCHT

In diesem Beispiel wird die Bemessung eines Stahltrapezprofils für Dächer behandelt. Es besteht aus Edelstahl rostfrei der Sorte 1.4401, die Materialdicke beträgt 0,6 mm. Die Abmessungen des Querschnittes sind wie folgt:

In diesem Beispiel sollen folgende Bemessungsschritte veranschaulicht werden:

- Bestimmung der wirksamen Querschnittswerte im Grenzzustand der Tragfähigkeit
- Bestimmung der Biegetragfähigkeit des Querschnittes
- Bestimmung der Tragfähigkeit des mittleren Lagers
- Bestimmung der Verformungen im Grenzzustand der Gebrauchstauglichkeit

Dieses Beispiel bezieht sich auf die prEN 1993-1-3:2005 und übernimmt die dort verwendeten Symbole und Terminologie. Für die vollständige Vorgehensweise der Bemessung und die Veranschaulichung zugehöriger Abbildungen sollte die prEN 1993-1-3 herangezogen werden.

Bemessungsdaten

Spannweite	L	= 2900 mm	
Auflagerbreite	$S_{\rm S}$	= 100 mm	
Bemessungslast	Q	$= 1.4 \text{ kN/m}^2$	
Profildicke	t	= 0.6 mm	
Streckgrenze	$f_{ m yb}$	$= 240 \text{ N/mm}^2$	Tabelle 3.1
Elastizitätsmodul	E	$= 200\ 000\ \text{N/mm}^2$	Abschnitt 3.2.4
Teilsicherheitsbeiwert	44	- 11	Tabelle 2.1
	γ_{M0}	= 1,1	
Teilsicherheitsbeiwert	$\gamma_{\rm M1}$	= 1,1	Tabelle 2.1

Symbole und detaillierte Abmessungen, die in der Berechnung verwendet werden, sind der folgenden Abbildung zu entnehmen. Die Position des Querschnittes wird so angegeben, dass infolge Biegung am Lager der obere Flansch unter Druck steht.

VTT TECHNICAL RESEARCH
CENTRE OF FINLAND VTT BUILDING AND TRANSPORT
VTT BUILDING AND TRANSPORT

Kemistintie 3, Espoo P.O.Box 1805, FIN-02044 VTT, Finland

Telephone: + 358 9 4561 Fax: + 358 9 456 7003

Statikpapier

Nr.	R0SU0	0658	Blatt	2	von	7	Index	В
Titel	ECSC S	Stainless S	Steel Val	lorisati	on Pro	ject		
Inhalt		sungsbeis pezprofil					nittklass	e 4
Auftraggeber		Aufgestellt	A	AΤ	Datum	J	Juni 200)2
ECSC		Geprüft	JE	K	Datum	Ţ	Juni 200)2

b _{u0} /2	
h _{su}	θ
1	
h ₀	
1	
	h _{sl}
1	$w_0/2$ $b_{l0}/2$

Auf die Schwerachse $h_0 = 70 \, \text{mm}$ bezogene $w_0 = 212,5 \,\mathrm{mm}$ Abmessungen $b_{u0} = 65 \text{ mm}$

Korrigiert

 $b_{10} = 57 \text{ mm}$ $b_{\rm su} = 20 \, \rm mm$ $b_{su0} = 8 \text{ mm}$ $h_{\rm su} = 6 \, \rm mm$

JBL/MEB Datum

 $b_{\rm s}I = 20 \, \rm mm$ $b_{s10} = 8 \text{ mm}$ $h_{\rm s1} = 6 \, \rm mm$

r = 3 mmInnerer Radius der Knickpunkte

Winkel des Steges:

$$\theta = \operatorname{atan} \left| \frac{h_0}{0.5(w_0 - b_{u0} - b_{l0})} \right| = 57.1^{\circ}$$

WIRKSAME QUERSCHNITTSWERTE IM GRENZZUSTAND DER TRAGFÄHIGKEIT

Prüfen des maximalen Verhältnisses Breite/Dicke:

 $h_0 / t = 117$ ist kleiner als $400 \sin \theta = 336$ und

 $b_{10} / t = 95$ ist kleiner als 400.

Abschnitt 4.4

Tabelle 4.1

April 2006

Tabelle 4.1

Lage der Schwerachse bei voller Wirksamkeit des Steges

Wirksame Breite des gedrückten Flansches:

$$b_{\rm p} = \frac{b_{\rm u0} - b_{\rm su}}{2} = 22,5 \,\mathrm{mm}$$

$$b_{\rm p} = \frac{b_{\rm u0} - b_{\rm su}}{2} = 22,5 \,\text{mm}$$
 $\varepsilon = \left[\frac{235}{f_{\rm y}} \frac{E}{210\,000} \right]^{0.5} = 0,966$

$$k_{\sigma} = 4$$

$$\overline{\lambda}_{\rm p} = \frac{b_{\rm p}/t}{28.4\varepsilon\sqrt{k_{\rm o}}} = 0.684$$

$$\rho = \frac{0,772}{\overline{\lambda}_{p}} - \frac{0,125}{\overline{\lambda}_{p}^{2}} = 0,862 \qquad \text{da } \rho < 1, \qquad b_{\text{eff,u}} = \rho b_{p} = 19,4 \text{ mm}$$

da
$$\rho$$
 < 1

$$b_{\rm eff,u} = \rho b_{\rm p} = 19.4 \, {\rm mm}$$

Glch. 4.1a

Reduzierte Dicke der Steife des Flansches:

Abschnitt 4.5.3

\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-	Nr.	R0SU0	0658	Blatt	3	von	7	Index	В
VTT TECHNICAL RESEARCH	Titel	ECSC S	Stainless S	Steel V	alorisati	on Pro	ject		
CENTRE OF FINLAND VTT BUILDING AND TRANSPORT Kemistintie 3, Espoo	Inhalt		sungsbeis pezprofil			_		nittklass	e 4
P.O.Box 1805, FIN–02044 VTT, Finland Telephone: + 358 9 4561 Fax: + 358 9 456 7003	Auftraggeber		Aufgestellt	A	AT	Datum		Juni 200)2
Statikpapier	ECSC		Geprüft	J	EK	Datum		Juni 200)2
			Korrigiert	J	BL/MEB	Datum		April 20	06
$t_{su} = \frac{\sqrt{h_{su}^2 + \left(\frac{b_{su} - b_{su0}}{2}\right)^2}}{h_{su}}t = A_s = (b_{eff,u} + b_{su0})t + 2h_{su}t_{su} = A_s$		_						Fig. 4.3	
$e_{\rm s} = \frac{b_{\rm su0}h_{\rm su}t + 2h_{\rm su}\frac{h_{\rm su}}{2}t_{\rm su}}{A_{\rm s}} =$	= 2,23 mm	2						F: 42	
$I_{\rm s} = 2(15t^2e_{\rm s}^2) + b_{\rm su0}t(h_{\rm su} - e_{\rm s})^2$	$+2h_{\rm su}t_{\rm su}\left(\frac{h_{\rm su}}{2}\right)$	$\left(-e_{\rm s}\right)^2$	$2\left(\frac{15t^4}{12}\right)$	$+\frac{b_{\rm su0}t^3}{12}$	$+2\frac{t_{\rm su}h_{\rm s}}{12}$	3 Su		Fig. 4.3	
$=159,53\mathrm{mm}^4$									
$b_{\rm s} = 2\sqrt{h_{\rm su}^2 + \left(\frac{b_{\rm su} - b_{\rm su0}}{2}\right)^2 + b_{\rm s}^2}$	$_{su0} = 25,0$	0 mm							
$l_{\rm b} = 3.07 \left(I_{\rm s} b_{\rm p}^2 \frac{2b_{\rm p} + 3b_{\rm s}}{t^3} \right)^{1/4} =$								Glch. 4	.9
$s_{\rm w} = \sqrt{\left(\frac{w_0 - b_{\rm u0} - b_{l0}}{2}\right)^2 + {h_0}^2}$	= 83,4 mr	n							
$b_{\rm d} = 2b_{\rm p} + b_s$	$k_{\text{w0}} = \sqrt{\frac{s}{s_{\text{v}}}}$	$\frac{s_{\rm w} + 2b_{\rm d}}{+ 0.5b_{\rm d}}$	- = 1,37					Glch. 4 and 4.1	
$l_{\rm b}/s_{\rm w}=3.01$	da $l_{\rm b}/s_{\rm w} >$	$2, k_{\rm w} =$	$k_{\rm w0} = 1.3$	7					
$\sigma_{\rm cr,s} = \frac{4.2k_{\rm w}E}{A_{\rm s}} \sqrt{\frac{I_{\rm s}t^3}{4b_{\rm p}^2(2b_{\rm p}+3b_{\rm s})}}$	= 515 N/m	mm ²						Glch. 4	.3
$\overline{\lambda}_{\rm d} = \sqrt{\frac{f_{\rm yb}}{\sigma_{\rm cr,s}}} = 0,683$									
Da $0.65 < \overline{\lambda}_{d} < 1.38,$	$\chi = 1,47 -$	$-0,723\overline{\lambda}_{\mathrm{d}}$	= 0,98					Glch. 4	.15
$t_{\rm red,u} = \chi t = 0,588 \mathrm{mm}$									
Der Abstand der neutralen Faser vor	n gedrückter	n Flanscl	n beträgt:						
$t_{1} = \frac{\sqrt{h_{sl}^{2} + \left(\frac{b_{sl} - b_{sl0}}{2}\right)^{2}}}{h_{sl}}t = 0,849$			-						

\	Nr.	R0SU0	0658	Blatt	4	von	7	Index	В
VTT TECHNICAL RESEARCH	Titel	ECSC S	Stainless S	Steel Va	lorisati	on Pro	oject		
CENTRE OF FINLAND VTT BUILDING AND TRANSPORT Kemistintie 3, Espoo P.O.Box 1805, FIN-02044 VTT, Finland	Inhalt		sungsbeisp pezprofil:					nittklasse	e 4
Telephone: + 358 9 4561 Fax: + 358 9 456 7003	Auftraggeber		Aufgestellt	A	Α Τ	Datum	ı Ţ	Juni 200	2
Statikpapier	ECSC		Geprüft	JE	K	Datum	١ ,	Juni 200	2
			Korrigiert	JB	L/MEB	Datum	۱ /	April 20	06

ι_{W}	_	i / Sili U	_	0,717111111

$$\begin{array}{lll} e_i = & A_i = \\ 0 & 0.5b_{\rm eff,u}\,t \\ 0 & 0.5b_{\rm eff,u}\,\chi\,t \\ 0.5h_{\rm su} & h_{\rm su}\,\chi t_{\rm su} \\ h_{\rm su} & 0.5b_{\rm su0}\,\chi\,t \\ 0.5h_0 & h_0t_{\rm w} \\ h_0 & 0.5(b_{l0}-b_{sl})t \\ h_0-0.5h_{sl} & h_{\rm sl}t_{\rm sl} \\ h_0-h_{\rm sl} & 0.5b_{\rm sl0}t \end{array}$$

Wirksamer Querschnitt des gedrückten Bereiches des Steges

Abschnitt 4.4.1

$$\psi = -\frac{h_0 - e_{\rm c}}{e_{\rm c}} = -1,006$$

$$k_{\sigma} = 5.98(1 - \psi)^2 = 24.1$$

Tabelle 4.3

$$b_{\rm p} = h_0 / \sin \theta = 83.4 \,\mathrm{mm}$$

$$b_{\rm p} = h_0 / \sin \theta = 83.4 \,\mathrm{mm}$$
 $\overline{\lambda}_{\rm p} = \frac{b_{\rm p} / t}{28.4 \varepsilon \sqrt{k_{\sigma}}} = 1,032$

$$\rho = \frac{0,772}{\overline{\lambda}_{p}} - \frac{0,125}{\overline{\lambda}_{p}^{2}} = 0,630$$

$$\rho = \frac{0,772}{\overline{\lambda}_{\rm p}} - \frac{0,125}{\overline{\lambda}_{\rm p}^2} = 0,630$$
 Wegen $\rho < 1$, $b_{\rm eff} = \rho \frac{b_{\rm p}}{1 - \psi} = 26,2$ mm

Glch. 4.1a Tabelle 4.3

$$s_{\text{eff},1} = 0.4b_{\text{eff}} = 10.5 \,\text{mm}$$

$$s_{\text{eff,n}} = 0.6b_{\text{eff}} = 15.7 \,\text{mm}$$

Tabelle 4.3

Wirksame Querschnittswerte für die halbe Riffelung

$$\begin{array}{lll} h_{\mathrm{eff,1}} = s_{\mathrm{eff,1}} \sin \theta & h_{\mathrm{eff,n}} = s_{\mathrm{eff,n}} \sin \theta \\ \\ e_{\mathrm{eff,i}} = & A_{\mathrm{eff,i}} = & I_{\mathrm{eff,i}} \\ 0 & 0.5 b_{\mathrm{eff,u}} t & 0 \\ 0 & 0.5 b_{\mathrm{eff,u}} \chi t & 0 \\ 0.5 h_{\mathrm{su}} & h_{\mathrm{su}} \chi t_{\mathrm{su}} & \chi t_{\mathrm{su}} h_{\mathrm{su}}^3 / 12 \end{array}$$

\	Nr. ROSU	00658	Blatt	5	von	7	Index	В
VTT TECHNICAL RESEARCH	Titel ECSC	Stainless	Steel Val	orisati	on Pro	oject	•	
CENTRE OF FINLAND VTT BUILDING AND TRANSPORT		ssungsbeis						
Kemistintie 3, Espoo P.O.Box 1805, FIN–02044 VTT, Finland	Stahlt	rapezprofil	s für Däc	her de	r Que	rsch	nittklass	se 4
Telephone: + 358 9 4561 Fax: + 358 9 456 7003	Auftraggeber	Aufgestellt	AA	T	Datum	1	Juni 200	02
Statikpapier	ECSC	Geprüft	JEI	K	Datum	1	Juni 200	02
		Korrigiert	JBI	L/MEB	Datum	1	April 20	006
$h_{ m su}$	$0.5b_{\mathrm{su}0}\chi t$		0					
$0.5h_{{ m eff},1}$	$h_{ m eff,l}t_{ m w}$	$t_{ m w}$	$h_{\rm eff.1}^{3}/11$	2				
$h_0 - 0.5(h_0 - e_c + h_{eff,n})$	$(h_0 - e_{\rm c} + h_{{\rm eff},n})t_w$	$t_{\rm w}(h_0 -$	$e_{\rm c} + h_{\rm eff,}$	$(n)^3/12$	2			
h_0	$0.5(b_{l0}-b_{\mathrm sl})t$		0					
$h_0-0.5h_{\rm sl}$	$h_{ m sl}t_{ m sl}$	i	$t_{\rm sl}h_{\rm sl}^3/12$					
$h_0-h_{ m sl}$	$0.5b_{ m sl0}t$		0					
$A_{\rm tot} = \sum A_{\rm eff,i} = 78,2 \rm mm^2$	$e_{\rm c} = \frac{\sum A_{\rm eff,i} e_{\rm eff,i}}{A_{\rm tot}}$	= 37,2	0 mm					
$I_{\text{tot}} = \sum I_{\text{eff,i}} + \sum A_{\text{eff,i}} (e_{c} - e_{\text{eff,i}})$	tot							
tot Zaerr, i Zaerr, i (Cc Cerr, i)	20 100 11111							
Optional können die wirksamen Qu Schwerachse ermittelt werden.	uerschnittswerte auch	iterativ in	Bezug a	uf die	Lage	der	prEN 1 3, Satz 5.5.3.3	
Momententragfähigkeit pro L	ängeneinheit (1 m)					Abschr 4.7.4	nitt
$I = \frac{1000 \text{mm}}{0.5 \text{w}_0} I_{\text{tot}} = 549000$) mm ⁴							
$W_{\rm u} = \frac{I}{e_{\rm c}} = 14800{\rm mm}^3$	$W_1 = {h_0}$	$\frac{I}{-e_c} = 16$	800 mm ³					
da $W_{\rm u} < W_{\rm l}$,		$W_{\rm u} = 14$						
$M_{\rm c,Rd} = W_{\rm eff,min} f_{\rm y} / \gamma_{\rm M0} = 3,22$	- ,	u					Glch. 4	1.29
BESTIMMUNG DER TRAGFÄHIGKE	IT DEC MITTI EDEN I	ACERS						
Tragfähigkeit des Steges hins							Abschr	nitt
	• •						5.4.4	
Hier $\varphi = \theta$							nrDN 1	002 1
$l_{\rm a} = s_{\rm s}$ and $\alpha = 0.15$							prEN 1 3, Glch und 6.2	. 6.19
$R_{\text{w,Rd}} = \alpha t^2 \sqrt{f_{\text{yb}} E} \left(1 - 0.1 \sqrt{\frac{r}{t}} \right)$	$\left(0.5 + \sqrt{0.02 \frac{l_a}{t}}\right) \left[2.4 + \frac{l_a}{t}\right]$	$-\left(\frac{\phi}{90\deg}\right)$	$\left[\frac{1}{\gamma_{\rm M1}} \frac{10}{0}\right]$	000 mr 0,5w ₀	<u>n</u>		prEN 1 1-3, Gl 6.18	993-
$= 16,2 \mathrm{kN}$								

\\	Nr.	R0SU0	0658	Blatt	6	von	7	Index	В
VTT TECHNICAL RESEARCH	Titel	ECSC S	Stainless S	Steel Va	lorisati	on Pro	oject		
CENTRE OF FINLAND VTT BUILDING AND TRANSPORT Kemistintie 3, Espoo P.O.Box 1805, FIN-02044 VTT, Finland	Inhalt		sungsbeisj pezprofil					nittklass	se 4
Telephone: + 358 9 4561 Fax: + 358 9 456 7003	Auftraggeber		Aufgestellt	A	A T	Datum	n ,	Juni 200	02
Statikpapier	ECSC		Geprüft	JE	K	Datum	n ,	Juni 200	02
			Korrigiert	JB	L/MEB	Datum	ر n	April 20	006

Interaktion aus Biegung und Lagerreaktion

Erhöhte Lasteinwirkung pro Einheitsbreite (1m):

$$\gamma_{\rm G} = 1.35$$

$$\gamma_{\rm O} = 1.5$$

$$\gamma_{\rm G} = 1.35$$
 $\gamma_{\rm Q} = 1.5$ Eigengewicht: $G = 70 \,\rm N/m^2$

Abschnitt 2.3.2

$$q = (\gamma_G G + \gamma_Q Q) = 2,20 \text{ kN/m}$$

$$M_{\rm Ed} = \frac{qL^2}{8} = 2,31 \,\text{kNm}$$
 $F_{\rm Ed} = \frac{5}{4} qL = 7,96 \,\text{kN}$

$$F_{\rm Ed} = \frac{3}{4}qL = 7,96 \,\mathrm{kN}$$

$$\frac{M_{\rm Ed}}{M_{\rm a, Rd}} = 0.716$$

$$\frac{F_{\rm Ed}}{R_{\rm w,Rd}} = 0.49$$

$$\frac{M_{\rm Ed}}{M_{\rm c,Rd}} = 0,716$$
 $\frac{F_{\rm Ed}}{R_{\rm w,Rd}} = 0,491$ $\frac{M_{\rm Ed}}{M_{\rm c,Rd}} + \frac{F_{\rm Ed}}{R_{\rm w,Rd}} = 1,21$

Interaktion aus Biegung und Lagerreaktion genügt den Bedingungen:

$$\frac{M_{\rm Ed}}{M_{\rm c,Rd}} \le 1$$

$$\frac{F_{\rm ed}}{R_{\rm w,Rd}} \le 1$$

$$\frac{M_{\rm Ed}}{M_{\rm c,Rd}} + \frac{F_{\rm Ed}}{R_{\rm w,Rd}} \le 1,25$$

prEN 1993-1-3, Glchn. 6.28a-c

BESTIMMUNG DER VERFORMUNG IM GRENZZUSTAND DER GEBRAUCHSTAUGLICHKEIT (SLS)

Wirksame Querschnittswerte

Im Grenzzustand der Gebrauchstauglichkeit sollte die wirksame Breite der gedrückten Bauteile basierend auf der Druckspannungsverteilung im Bauteil infolge Gebrauchslasten ermittelt werden.

prEN 1993-1-3, Satz 5.5.1(4)

Maximale Druckspannung im wirksamen Querschnitt im SLS. Es wurde eine konservative Näherung mittels W_{u} , bestimmt im Grenzzustand der Tragfähigkeit, vorgenommen.

$$M_{y,Ed,ser} = \frac{(G+Q)L^2}{8} = 1,55 \text{ kNm}$$

$$\sigma_{\text{com,Ed,ser}} = \frac{M_{\text{y,Ed,ser}}}{W_u} = 105 \text{ N/mm}^2$$

Die wirksamen Querschnittswerte werden wie zuvor im Grenzzustand der Tragfähigkeit bestimmt, wobei allerdings $f_{
m yb}$ durch $\sigma_{
m com, Ed, ser}$ ersetzt wird und die Dicke der Steife des Flansches nicht reduziert wird.

Die Ergebnisse der Berechnung sind:

Wirksame Breite des gedrückten Flansches

Der Flansch ist vollständig wirksam

Lage der Schwerachse bei vollständig wirksamen Steg

= 34,1 mm

Wirksamer Querschnitt des gedrückten Bereiches des Steges

Der Steg ist vollständig

wirksam

\\	Nr.	R0SU0	0658	Blatt	7	von	7	Index	В
VTT TECHNICAL RESEARCH	Titel	ECSC S	Stainless S	Steel Va	lorisati	on Pro	oject		
CENTRE OF FINLAND VTT BUILDING AND TRANSPORT Kemistintie 3, Espoo P.O.Box 1805, FIN-02044 VTT, Finland	Inhalt		ungsbeisp pezprofil					nittklass	e 4
Telephone: + 358 9 4561 Fax: + 358 9 456 7003	Auftraggeber		Aufgestellt	A	A T	Datum	١,	Juni 200)2
Statikpapier	ECSC		Geprüft	JE	K	Datum	ı .	Juni 200)2
			Korrigiert	JB	L/MEB	Datum	ر ۱	April 20	006

Wirksamer Bereich des Steges	Der Steg wird reduziert
	$(\rho = 0.88)$
Wirksame Querschnittswerte für die halbe Riffelung	$A_{\text{tot}} = 86.6 \text{ mm}^2$
	$e_{\rm c} = 34.8 \mathrm{mm}$
	$I_{\rm tot} = 63 \ 700 \ {\rm mm}^4$
Wirksame Querschnittswerte pro Einheitsbreite (1 m)	$I = 600\ 000\ \mathrm{mm}^4$
	$W_{\rm u} = 17 \ 300 \ {\rm mm}^4$
	$W_l = 17 300 \text{ mm}^4$

Bestimmung der Verformung

Anhang C

Sekantenmodul der Elastizität entsprechend des Maximalwertes des Biegemomentes:
$$\sigma_{\text{I,Ed,ser}} = \frac{M_{\text{y,Ed,ser}}}{W_{\text{u}}} = 89,5 \text{ N/mm}^2$$

$$\sigma_{\text{2,Ed,ser}} = \frac{M_{\text{y,Ed,ser}}}{W_{\text{l}}} = 90,8 \text{ N/mm}^2$$

$$E_{\text{s,1}} = \frac{E}{1+0,002 \frac{E}{\sigma_{\text{I,Ed,ser}}} \left(\frac{\sigma_{\text{1,Ed,ser}}}{f_{\text{yb}}}\right)^n} = 199 \text{ kN/mm}^2$$

$$n = 7,0$$
 Anhang C Tabelle C.1
$$E_{\text{s,2}} = \frac{E}{1+0,002 \frac{E}{\sigma_{\text{I,Ed,ser}}} \left(\frac{\sigma_{\text{2,Ed,ser}}}{f_{\text{yb}}}\right)^n} = 199 \text{ N/mm}^2$$

$$E_{\text{s,ser}} = \frac{E_{\text{s,1}} + E_{\text{s,2}}}{2} = 199 \text{ N/mm}^2$$
 Anhang C

Prüfen der Verformung:

Als konservative Näherung wird die Veränderlichkeit von $E_{s.ser}$ entlang der Bauteilachse

$$x = \frac{1+\sqrt{33}}{16}L = 1,22 \,\text{m}$$
 (Lage der maximalen Verformung)

$$\delta = \frac{(G+Q)L^4}{48E_{\text{s,ser}}I} \left(\frac{x}{L} - 3\frac{x^3}{L^3} + 2\frac{x^4}{L^4} \right) = 4.7 \text{ mm}$$

Die Verformung darf L/200 = 14,5 mm nicht überschreiten, daher ist die berechnete Verformung akzeptabel.